Reproducibility and Pseudo-Determinism in Log-Space
نویسندگان
چکیده
A curious property of randomized log-space search algorithms is that their outputs are often longer than their workspace. This leads to the question: how can we reproduce the results of a randomized log space computation without storing the output or randomness verbatim? Running the algorithm again with new random bits may result in a new (and potentially different) output. We show that every problem in search-RL has a randomized log-space algorithm where the output can be reproduced. Specifically, we show that for every problem in search-RL, there are a pair of log-space randomized algorithms A and B where for every input x, A will output some string tx of size O(log n), such that B when running on (x, tx) will be pseudo-deterministic: that is, running B multiple times on the same input (x, tx) will result in the same output on all executions with high probability. Thus, by storing only O(log n) bits in memory, it is possible to reproduce the output of a randomized log-space algorithm. An algorithm is reproducible without storing any bits in memory (i.e., |tx| = 0) if and only if it is pseudo-deterministic. We show pseudo-deterministic algorithms for finding paths in undirected graphs and Eulerian graphs using logarithmic space. Our algorithms are substantially faster than the best known deterministic algorithms for finding paths in such graphs in log-space. The algorithm for search-RL has the additional property that its output, when viewed as a random variable depending on the randomness used by the algorithm, has entropy O(log n).
منابع مشابه
Log-Normal and Mono-Sized Particles’ Packing into a Bounded Region
Many systems can be modeled with hard and various size spheres, therefore packing and geometrical structures of such sets are of great importance. In this paper, rigid spherical particles distributed in different sizes are randomly packed in confined spaces, using a parallel algorithm. Mersenne Twister algorithm was used to generate pseudorandom numbers for initial coordination of particles. Di...
متن کاملUmbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملPseudo-Deterministic Proofs
We introduce pseudo-deterministic interactive proofs (psdAM): interactive proof systems for search problems where the verifier is guaranteed with high probability to output the same output on different executions. As in the case with classical interactive proofs, the verifier is a probabilistic polynomial time algorithm interacting with an untrusted powerful prover. We view pseudo-deterministic...
متن کاملA First Look at Reproducibility and Non-Determinism in CMS Software and ROOT Data
Reproducibility is an essential component of the scientific process. Including software and data with a published paper is a good step towards reproducible research. However, the presence of non-determinism in a scientific workflow can make validating results very difficult even between two runs on the same machine, the same day, and using the exact same command and parameters. But for reproduc...
متن کاملAn Analysis of Reproducibility and Non-Determinism in HEP Software and ROOT Data
Reproducibility is an essential component of the scientific method. In order to validate the correctness or facilitate the extension of a computational result, it should be possible to re-run a published result and verify that the same results are produced. However, reproducing a computational result is surprisingly difficult: non-determinism and other factors may make it impossible to get the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 25 شماره
صفحات -
تاریخ انتشار 2018